Water Resources

Metropolitan’s Foundational Actions Funding Program

On February 23, I was invited to present the keynote address at a technical conference organized by the Metropolitan Water District of Southern California (Metropolitan) to present the results and accomplishments of 13 projects funded, in part, by Metropolitan’s Foundational Actions Funding Program (FAF). These projects represent an investment of approximately $3-million in research, technical studies, and pilot projects focused on reducing the barriers to future water supply innovations. More information on the FAF program can be found here. Below are some excerpts from my keynote. The entire address is available here.

It’s a pleasure to speak here today as part of Metropolitan’s Foundational Actions Funding Program and the 2015 update to its Integrated Resources Plan. As Deven [Upadhyay] mentioned, I worked on Metropolitan’s first IRP published in 1996. I checked, and that IRP had a planning horizon of 2020 – which seemed a long way off at the time. So frankly, I am grateful to be here at all.

Back in the 1990s, as a planner, I was enthusiastic about the chance to evaluate resource strategies that could reliably meet Southern California’s water demands, and be presented on so-called “exceedance curves” (still in use of course) that specifically quantified both the frequency and extent of future water supply shortages and surpluses. It offered board members information to make confident decisions regarding the level of service that Metropolitan would attain, and the amount of revenue that would be needed to do it.

Unfortunately, we can’t make those promises today with anything like the level of certainty we claimed in the 1990s; and we can’t deliver future water supplies without collaboration and partnerships that reach well beyond traditional institutional boundaries.

Why is this the case? Because, in my view, we’re confronted with the convergence of two forces that are game changers in our industry – one is the deep uncertainty of climate change, and the other is the extreme complexity of our radical transition to one-water-solutions – and all this while trying to maintain aging and outdated infrastructure.

When Metropolitan developed the concept of “foundational actions,” as part of its 2010 IRP update, I was genuinely impressed. It demonstrated a willingness to invest in research, technical studies, and pilot projects specifically focused on reducing the barriers to future water supply from all sources, at every scale.

That includes the renewal and repurposing of larger-scale centralized and decentralized infrastructure on one hand; and the micro-scale re-invention of urban landscape, stormwater management, and the built environment – one tiny change at a time – on the other. Helping bridge this apparent divide between the large-scale top-down and the micro-scale bottom-up worlds of innovation is one of the important reasons you’re here today.

We all need to rely a little more on creativity, imagination and a holistic sense of the continuity of all our efforts is essential to making change happen. We will never discover one optimal winning solution, because a single technological breakthrough will never emerge that can sustain us in a rapidly changing and unpredictable world.

We need to promote an adaptive culture of collaboration, supporting the efforts of everyone who is attempting to achieve the values and goals of a sustainable water future.

Let’s encourage and foster a growing multitude of good ideas at every scale, allowing them to co-exist and emerge from all directions and many diverse communities, as the best response to a future of rapid change and extreme uncertainty. I applaud Metropolitan on its commitment to spend resources on making that happen. And just as important, I congratulate you on your commitment and effort in support of Metropolitan’s foundational actions program. What we are observing here today is tangible proof that these innovative concepts and approaches can be made a reality.

 

Accelerating Adoption of Water Innovations

On October 5, I was honored to present the opening keynote at the WaterSmart Innovations 2016 Conference in Las Vegas. I had been there twice before — in 2010 as an executive at CDM Smith and Chair of IWA’s Cities of the Future Program; and then again in 2013, as a Visiting Professor from the University of South Florida’s Patel College of Global Sustainability. Here’s a brief summary. If you would like to read the entire keynote, you can obtain a copy here

Top-Down and Bottom-Up Innovation

From my perspective, this annual conference brings together the water industry’s most dedicated community of change agents — working enthusiastically to disrupt the status quo. And at the same, it’s a very diverse group of change agents, representing water utilities, technology companies, and NGO’s. Most of participants get very fired-up by the success stories they share at the conference, and maybe occasionally commiserate with one another, when the decision-makers they work with resist learning from, or applying those breakthroughs that have inspired them.

I was looking for a chance to discuss a dilemma that I’ve been thinking about for some time. It stems from having had the experience of working on innovative water projects at vastly different scales — the repurposing of large-scale centralized infrastructure on one hand; and the micro-scale re-invention of urban landscape, stormwater management, and the built environment – one tiny change at a time – on the other.

The questions I posed and answered in the keynote were the following:

  1. Can we span this apparent divide between the large-scale top-down and the micro-scale bottom-up worlds of innovation to arrive at a more unified vision of adaptation and change?
  2. Can we speed up the adoption of both the top-down and the bottom-up simultaneously?

I concluded that the answers were “yes,” but it will require at least three significant changes in how we view water management and the processes that generate and regenerate urban infrastructure.

Competition and the Optimization Trap

The first relates to competition and what I’ll call the “optimization trap.” It involves relaxing an expectation that everything we do must fit neatly into a top-down structure of cost-effective, prioritized, capital planning – resulting in a series of perfectly synchronized investments.

I’m defining optimization trap as the false belief that every solution to a problem can be optimized, and no action should be taken until it has been optimized.

Institutional Barriers to Change

The second relates to standardization, regulations, and other institutional barriers to change. They all derive from important public health and environmental protection goals but can present impediments to innovation in our industry.

We must consider embarking on more innovation initiatives simultaneously, encouraging apparently redundant efforts to accelerate adoption – investing in many real options for a deeply uncertain future.

Re-engagement of Individual Citizens

And finally a less obvious requirement, re-engaging individual citizens in the process – the reconnection of people (including ourselves as water users) to the technologies we have been kept apart from for decades.

The solutions that have the greatest potential of making us sustainable are the ones that re-connect people (all people) with the natural and technological systems that sustain everyone. Not just spectators, free riders on this spaceship, but caring, engaged participants in the real business of living on a blue planet.

Here is a video of the opening session, including great introductions by the conference chair Doug Bennett and Nevada Congresswoman Tina Titus.

Searching for the Suitable Successor

Earlier this month, I was lucky enough to be in The Netherlands at Amsterdam International Water Week presenting a paper co-authored with my good friend and colleague, Enrique Lopezcalva. While we’re preparing the longer paper for publication, I thought a summary of our 15-minute presentation might be of interest here. 

Extreme Uncertainty and Climate Change in Water Supply Decision Making

Our Thesis

Incorporating extreme uncertainty into water resources management and planning is an imperative for sound decision-making. Yet there are only a few established methods and tools for accomplishing that goal.

In addition, there are many flawed methods that are inadvertently employed in our current practices – which we will explain. This thesis builds on the bold statement that appeared in the February 2008 issue of Science entitled, “Stationarity is Dead: Wither Water Management?” As previously cited in this blog, the authors state that:

“In view of the magnitude and ubiquity of the hydroclimatic change apparently now under way . . . we assert that stationarity is dead and should no longer serve as a central, default assumption in water-resource risk assessment and planning. Finding a suitable successor is crucial for human adaptation to changing climate.

Most practitioners have acknowledged and accepted the concluding assertion, but few of us have been able to do much about it. Like many water resources planners, Enrique and I have been searching for the suitable successor.

Why is that so difficult? Well, we are not well equipped to deal with the uncertainty that a lack of stationarity in climate and hydrology impose on our planning and analysis.

Our Focus

In response to this challenge, our research and practice has been focused on three areas:

  • Better understanding of the sources of uncertainty in the analysis of climate change and their implications for decision makers,
  • Avoidance of inadvertent over-simplification of the nature of uncertainty and resulting translation of its implications into more traditional risk-based models, and
  • Practical recommendations for practitioners who grapple with these issues.

For the record, I want to define our terms when describing “uncertainty” versus “risk.” These are definitions that go back to terminology introduced in 1920s by economist Frank Knight and adopted by the IPCC. “Risk” is applied to variables where a probability distribution can be defined reasonably well based on available data. “Uncertainty” is applied to variables where the data or theories do not exist to apply a reasonably defensible probability distribution.

Sources of Uncertainty

Where does the uncertainty emerge in the absence of climatic stationarity? There are three primary sources:

  • Several green house gas emissions scenarios reflecting possible societal responses to climate change and resulting differences in radiative forcing,
  • Widely varying results from 20 global climate modeling teams, and
  • The complexity and imprecision of downscaling climate models to reflect localized conditions.

So how does this affect what planners do? Here is a highly simplified representation of the traditional water infrastructure planning process. It begins with hydrological models based on long-tern stationary time series data offering reliable predictions of the frequency and severity of events. That information is fed into engineering evaluations of alternative system and operational solutions that can meet clearly defined level of service goals. Finally, decision-makers select among alternatives often using multivariate planning tools that frequently rely heavily on net present value analyses and decision-tree results based on the expected value of outcomes. A deterministic approach relying largely on risk-based tools.

 

Figure 1

 

Our new reality requires extensive pre-analysis of the climate change implications on our hydrologic modeling. As mentioned earlier, this introduces compounding uncertainty related to GHG emissions scenarios where there is no historical data or theory that can be used to credibly assign probabilities.

 

Figure 2

 

Next, widely varying global climate models must be accounted for as well. And finally, given the scale of those global climate models (the entire planet) and a cell size that is significantly larger than the scale required to make decisions for local issues, downscaling is needed to adjust to the right resolution.

Hawkins Figure UncertaintyWhat do these steps contribute to the uncertainty we face? Hawkins and Sutton have worked extensively on addressing the first two sources (emissions scenarios and modeling variability). This graphic illustrates three sources of variability in global predictions (1) natural fluctuations in climate without radiative forcing in orange, (2) model uncertainty in response to the same radiative forcing assumptions in blue, and (3) scenario uncertainty for different GHG emissions pathways in green.

You can see that in long-lead time predictions the scenario uncertainties dominate the analysis. Interestingly, in short lead-time predictions and smaller scale predictions natural climate variation increases. As practitioners it is not easy to know what to do with such deep uncertainty resulting from so many variables.

Recommendations

So here are some recommendations. First, what not to do is attempt to convert these fundamental sources of extreme uncertainty into probabilistic representations of risk, even though almost all of our down-stream tools expect the analysis to come in that form.

1. Make sure that extreme uncertainty is a fundamental consideration throughout the entire planning process

If the predicted effects of climate change have been reduced to a single probabilistic hydrologic forecast, then the most basic dilemma regarding how to deal with extreme uncertainty has been simplified out of the decision.

2. Ensure that decisions are robust and flexible under a wide range of possible scenarios

Two good examples of analytical approaches that do not rely upon predictive models are Info-Gap Decision Theory (IGDT) developed by Yakov Ben-Haim, and Robust Decision Theory (RDT) developed by the RAND corporation.

3. Define the minimum acceptable levels of service in addition to desired level of service goals

Establish the level of service below which the utility must never fall, identifying downside threats and measures to avoid them. Ensure consistency between local scenarios and GHG emissions scenarios used by IPCC. What are the outcomes that must not be allowed to occur?

4. Identify the greatest vulnerabilities associated with the resources plan, prepare for them, and protect against them

Address specific vulnerabilities that could result in unacceptable levels of service and proactively address those weaknesses in the capital investment and operational planning of the utility. Look for the places where you are vulnerable and do something about them.

5. Correctly value flexibility in the analysis of costs and benefits

Quantify real savings that result from the ability to rapidly expand or shed capacity, as well as quantifying the benefits associated with the timing of expenditures, and the resolution of some uncertainties over time (new technologies and extreme events). While rarely seen in capital investments plans for water infrastructure, place a monetary value on the flexibility needed to mitigate for vulnerabilities should they occur. There has been much talk about whether or not desalination facilities in Australia are/were wasted investments. On most days, life boats on a perfectly sound ship are wasted investments, but nobody questions their utility and value. It’s an appropriate response to extreme uncertainties and unacceptable outcomes.

6. Avoid decisions based exclusively on NPV methodologies and clearly distinguish between the predictable and uncertain elements of the decision

Many assumptions regarding construction costs, operational costs, financing costs, and other variables are likely very predictable. Forecasts of future hydrology and customer demands less so. Further, it is impossible not to answer decision-makers questions about the NPV of investments. Still, it’s essential to introduce the deeply flawed representation of risk that results when probabilities are assigned to plausible events for which the likelihood of occurrence cannot be predicted.

7. Incorporate real options and future flexibility in any investment plan and budget

Finally, be creative in the solutions that are identified. Large scale, centralized, single purpose, rigid, barrier-based solutions are an excellent response to highly predictable outcomes. Unfortunately, in water resources planning, highly predictable outcomes are a thing of the past. Find new approaches. Solutions that provide redundancy, are modular, have rapid response times, distributed functionality, and offer increased levels of immunity to the hydrologic cycle (something water recycling and ocean desalination facilities do). Remember, proactive investments to increase preparedness and flexibility must be proposed before they can be evaluated. Don’t leave them out as alternatives.

Conclusions

What does this mean for planners, engineers, and policy makers? As planners, we should carefully deconstruct the decision-making tools we employ and evaluate how dependent they are on risk-based comparisons like net present values, decision-tree outcomes, and discount rate assumptions. Just as important is the development of tools that assess the value of flexibility — as opposed the the value of certainty.

As engineers, we should be sure that the solution set we bring to problem solving includes options that allow for flexibility and adaptation over time.

And as policy makers, we should support investments in options that increase preparedness, reduce response times, and track real needs as they are better understood over time. And finally, we should increase our investment in science and research to accelerate our understanding of climate change and inform appropriate responses.

 

enrique_lopez_lg

Enrique Lopezcalva is the Water Resources Practice Leader at RMC Water and Environment in San Diego, California

 

Making Decisions under Extreme Uncertainty

In California today, thinking about the high impact consequences of temperature increases, disappearing snowpack, and sea level rise could paralyze us; and that’s not the only unknown we’re facing. The impacts of seismic events on our imported water systems have both water supply and water quality consequences that are potential game stoppers; even the unknown timing of implementation of the BDCP and its ultimate costs represent enormous uncertainties (and that’s based on the assumption it proceeds). These severe uncertainties converge to make the definition and understanding of our information gaps (what we don’t know) more pressing than they have ever been.

Definition of Extreme Uncertainty

In situations of extreme uncertainty, effective decision-making is fundamentally different from those cases where our future needs and objectives are known, our choices will produce predictable outcomes, and the likelihood of success is based on a statistical record sufficient to provide us with accurate estimates of probability — what might be defined as a deterministic world. Almost 15 years ago, Michael Schwarz described the characteristics of “extreme uncertainty” in these terms:

 There are no stationary trends, no data points close to the relevant values of a variable and no theory to guide the forecast . . . an environment approximating an information vacuum. (Schwarz, 1999)

When it comes to planning, designing, and delivering traditional, large-scale water management infrastructure, we are often making decisions in “an environment approximating an information vacuum.”

This isn’t to say decisions can’t be made under these circumstances, only that unsatisfactory answers are likely to result from an overly deterministic view of the current state of knowledge and our ability to forecast future conditions — especially when it comes to the weather. This is well articulated in a very readable paper by the Society of Actuaries on decision-making under uncertain and risky situations.

Most people often make choices out of habit or tradition, without going through the decision-making process steps systematically. Decisions may be made under social pressure or time constraints that interfere with a careful consideration of the options and consequences.

Many of the decisions made regarding how we will meet our future water management needs are based almost entirely on both habit and tradition, often driven by both social and political pressure.

Info-Gap Decision Theory

There are other approaches. Israeli professor Yakov Ben-Haim, in his book Info-Gap Decision Theory: Decisions Under Severe Uncertainty, offers an innovative approach that works without any reliance on probabilities. He describes the fundamental difference between classical statistical methods and his analytical techniques. Info-Gap theory is built around quantifying the extent and potential consequences of our ignorance regarding future events, rather than assigning probabilities to future events about which we know very little or nothing. To quote Ben-Haim:

The place to start our investigation of the difference between probability and info-gap uncertainty is with the question: can ignorance by modeled probabilistically? The answer is ‘no’. The ignorance which is important to the decision maker is a disparity between [what] is known and what needs to be known in order to make a responsible decision; ignorance is an [information] gap.

Ben-Haim goes on to define the “robustness” and “opportuneness” of decisions using an analytical approach assessing a decision’s level of “immunity” to both pernicious (bad) and propitious (good) outcomes based on the quantification of what we know and what we don’t know – never resorting to the ubiquitous assigning of probabilities to outcomes the underpins most multi-objective decisions.

Whatever other considerations may be pertinent, we know that sources of supply from ocean desalination and recycled water are not affected by extremely uncertain future hydrology; just as we know that a major seismic event will do significant damage to Delta levees and impact water quality sometime in the future – even though we cannot predict when it will occur. With this (and other) knowledge, we can make decisions that do not rely on assumed probability distributions regarding future conditions that are largely unknown.

Accepting our inability to probabilistically predict the future does not mean we must accept a passive or reticent approach to taking planned and proactive action. Doing nothing maybe the worst decision we can make in the context of such extreme change. There are other ways – and info-gap decision theory is one of them.

What to Do About It

These questions should push us beyond the tools and materials in front of us, the proverbial tried-and-true approaches, towards examining fundamental ends, purposes and context. It’s a systems approach, a “whole water” approach that looks at the bigger picture and searches for more effective responses based on incremental changes, feedback, and adaptation. It employs new analytical tools like Ben-Haim’s info-gap decision theories and combines them with scenario planning, systems modeling and simulation, as well as classical methods to help us make robust decisions and increase our resilience to future surprises. “Keeping mistakes small and learning constant,” the saying goes.

Whatever we do in this new world of severe uncertainty, we are probably better off with solutions that are diversified, multi-purpose, smaller-scale, context sensitive, flexible, resilient and have low regret if they don’t perform as expected.

After 20 years of increasing our capacity to undertake integrated water resources planning using statistically based portfolio models taken from the power industry and the financial sector, I believe that we are at a point where it’s essential to re-evaluate our planning methodologies and tools to ensure that they are appropriate in a world of rapidly increasing vulnerability and uncertainty. Our historic confidence in the ability to predict future hydrology, future demands, and the useful life of facilities may be wholly unjustified in the world we live in. As Albert Einstein is credited with stating:

We cannot solve our problems with the same level of thinking that created them.

It is high time that we explore, discover, create, and invent new planning frameworks and tools that can help decision-makers manage the world we are headed towards – and be willing to let go of our overly deterministic problem-solving tools.

Unlearning the Rules of Thumb

In 1989, Alan Kay (who was then an Apple Fellow) made an often quoted pronouncement that the “The best way to predict the future is to invent it.” But in that same address, Kay also commented:

In some sense our ability to open the future will depend not on how well we learn anymore — but how well we are able to unlearn.

Let’s be honest with ourselves regarding what we do know, what we don’t know, and what we could know in making decisions about future investments, and to be courageous enough to develop better approaches and tools for decision-making in severe uncertainty. This is not the time to be gambling on events where we don’t know the odds, and we don’t know the payout.

Photo credit: FFCUL, 2012

Financing Green Infrastructure at VX2014

This year, I was lucky enough to be invited again to speak at the VerdeXchange Conference in Los Angeles. The panel I participated on was moderated by our former State Treasurer, Kathleen Brown, and included friends and colleagues Adel Hagekhalil (Assistant Director, City of Los Angeles Bureau of Sanitation) and Jack Baylis (Commissioner, CA Fish and Game Commission). Entitled “Financing Water, Energy and Resilient Infrastructure Projects,” I had three points to make:

Large-scale capital investments in traditional gray infrastructure for water supply, stormwater management, and flood protection are increasingly risky and difficult to justify.

Why are traditional approaches to water supply, stormwater management, and flood protection more risky in today’s environment? The short answer is climate change. But to be more specific, for water resources engineers and planners, there’s a deeply embedded, underlying assumption that has collapsed; and should forever change the way we make water-related investment decisions.

In 2008 an article appeared in Science, authored by a distinguished panel of academics and practitioners. It was a very brief (2 page) paper with the provocative title, “Stationarity is Dead: Wither Water Management?” It starts by defining the meaning and significance of stationarity in water management:

“Stationarity — the idea that natural systems fluctuate within an unchanging envelope of variability — is a foundational concept that permeates training and practice in water-resource engineering.”

In fact, in the planning of large-scale hydraulic structures used for water supply, stormwater, flood control, hydropower generation, and all else, stationarity serves as a fundamental assumption in the estimates of precipitation, water supplies and flows, as well as informing estimates of costs and revenues. And yet, the authors argue that:

“In view of the magnitude and ubiquity of the hydroclimatic change apparently now under way . . . we assert that stationarity is dead and should no longer serve as a central, default assumption in water-resource risk assessment and planning.”

Could they be more blunt? So where does that leave us.

Financing for more resilient green infrastructure comprised of small-scale, decentralized water management investments is rapidly emerging in the marketplace, employing ESCO-like models.

This is the good news. It is easier to finance less risky small-scale green water infrastructure compared to the past. The best example is the City of Philadelphia, with its 25-year, $2.4-billion Green City, Clean Waters plan to eliminate the need to build centralized storage and treatment for urban stormwater runoff, in order to to protect water quality from Combined Sewer Overflows (CSOs) under the Clean Water Act. In short, rather than building the centralized storage, the City has committed to reinvent its urban landscape, reducing demands on the sewer system while increasing livability throughout the City — using their words, to “equip the City to function as a ‘Green Machine.’”

As part of the program, Philadelphia has implemented a stormwater utility charge based on both the imperviousness and size of every parcel of land in the city. Perhaps more importantly, it also established a credit system that reduces those charges for large non-residential and condominium properties that make investments in green infrastructure.

Philadelphia has created a market-based framework that promises to transform the urban landscape on a large scale and accelerated pace. What’s just as interesting is the establishment of new ventures like Green Path Partners (GPP) willing to finance and deliver deals similar to those created by ESCOs in the energy sector. Established by CH2M Hill and EKO Asset Management Partners, GPP and others allow for the aggregation and investment of funds for the deployment of micro-scale green technologies in the water space. It’s already happening.

Finally, this shift from gray to green isn’t prevented by a lack of financing. The obstacle is our collective ambivalence (and occasional inability) to raise and commit substantial ratepayer revenue for green infrastructure improvements.

In my view, the biggest institutional barrier to financing resilient green infrastructure is not a lack of innovation in financial markets or a lack of technologies. In fact, on the financing side, I’ve been told that members of my generation would be delighted to invest a portion of their savings in green infrastructure projects enhanced by the credit strength of private-sector service providers and governmental agencies — offering modest returns.

What is rare, is a decision by a city like Philadelphia to seriously invest the revenues from its stormwater utility into far reaching urban remodeling comprised of small-scale, decentralized, resilient green retrofits — definitively moving beyond traditional gray solutions, where those same revenues could have been spent. And while I witness enthusiasm for the concepts of more resilient green solutions, I don’t see many large-scale water management investment decisions leaning definitively in the direction that Philadelphia is headed.

If we fully recognized the increased risk and uncertainty in our forecasts of future hydrology, many states, counties, and municipalities might make the same choice Philadelphia has made — with the additional benefits of lower costs and improved livability thrown in. A new EPA report on the economics of green infrastructure in Lancaster, Pennsylvania documents those benefits.

The financing is there, what is needed are water management agencies willing to raise and invest rate-payer revenues to shift their capital programs towards properly maintaining the gray assets we have, and rebalancing our future portfolio towards decentralized, green, and resilient urban infrastructure.

Photo credit: Philadelphia Water Department, Green City, Clean Waters

Modifying Our Urban DNA

In early May of this year, I had a chance to participate in the 2013 Global Meeting of the Habitat Partner University Initiative which was held at the Patel College of Global Sustainability of the University of South Florida in Tampa. I was asked to deliver the dinner keynote hosted by Dr. Kiran C. Patel. A copy of the entire address is available here. Some excerpts follow.

Redefining Relationships

We may all agree that because water is so central to the health, wellbeing, and sustainability of urban populations and their economies, the ways in which we manage it must be a primary consideration in urbanization and land-use planning. And yet, this is rarely the case.

Often our role as water planners and civil engineers is explicitly subordinated to the demands created by land-use, urban planning, and city design decisions. Like plumbers, we’re called upon to provide a reliable supply of potable water, take it away once it’s been used, keep property dry, and protect it from flooding. And the way we do it hasn’t changed much in the last 150 years. I will tell you that the propagation of this time-honored approach cannot keep up with the current pace of global urbanization. If you believe the industry’s self-assessment of our U.S. water infrastructure, we aren’t keeping up with the repair and replacement needs of the systems we already have.

Reinvention within the Water Sector

And if you asked “why?” – I would tell you that’s what you expect us to do. It’s built into the standards of professional practice, local ordinances and building codes, augmented by state and federal regulatory requirements that all together make it difficult to do anything else.

Why a radical change after so many accomplishments and public health successes? The answer is it cannot keep up with the world’s exponential population growth, the concentration of that growth in cities, and the exhaustion of readily available fresh water that can be abstracted from its sources without threatening the collapse of natural ecosystems. It has many shortcomings:

      • It can reach hundreds of kilometers to import water to the city – assuming withdrawals of increasing magnitude will not damage the ecosystems from which they are taken.
      • Because of these distances, it consumes large amounts of capital in its construction and large amounts of energy in lifting water over the terrain it crosses.
      • It requires large amounts of storage behind dams in order to balance the availability of the water and the timing of demands.
      • Once built, it is difficult to increase its capacity when population demands exceed available supplies – the marginal cost of additional supply is enormous.
      • It is highly vulnerable to both drought and flooding that can occur in the regions from which water is abstracted.
      • It uses potable water as the means of carriage for the human and industrial wastes it exports back to downstream receiving waters or the sea.
      • It inevitably competes for and wins the water that would have gone to agriculture and food production.
      • It treats all water to potable drinking water standards at massive centralized facilities – in spite of the fact that most water used in cities is not consumed by people.
      • It wastes to receiving waters a source of supply (used water) that we now have the technology to treat at any scale, to any quality needed.
      • It consumes additional energy in the treatment and recovery of the nutrients and resources flushed into the sanitation system; and finally
      • These highly expensive single-purpose systems are an “all-or-nothing” proposition. Both the water distribution network and sewer network either reach you or do not. And in many developing countries, they do not – nada.

And so it is that our belief that this age-old approach (with all its obvious flaws) is the only acceptable way of delivering water and sanitation inevitably dooms millions in the developing world to life in cities where their basic human needs will never be met.

Incorporation of Natural Systems and Functional Landscape

The next chapter in urban water management, being written here at the Patel College and elsewhere, adopts a radically different, holistic systems approach to the urban watershed. Striving to eliminate the focus on isolated linear components, it aspires to manage all of the elements of water supply, stormwater, and wastewater as an integrated closed loop – one water; and it aspires to address urban water needs at every scale and in every setting.

And we can do all of this because we now have the treatment technologies, green infrastructure designs, and smart sensors and monitoring to make it all happen in an efficient and cost-effective way. The changes that must occur are both physical – in terms of what our systems are intended to do; and institutional – in terms of who manages them, how they are paid for, and how the enabling governance reflected in ordinances, codes and regulations influence their development.

Cannot Become Part of Urban DNA without Broad Policy Changes

The successful reimagining of how the water cycle is introduced into tomorrow’s urban environment offers huge potential gains in the provision of water and sanitation to rapidly growing cities in the developing world, but it will require altering the DNA of how we currently manage water and develop water infrastructure in an urban setting.

As I have suggested we are very much locked into the infrastructure forms that have been successfully propagated through codes and ordinances. There are many good reasons for the intractable standards of performance and care that go into producing this infrastructure. Public health and public safety are at the top of the list. The success of our Progressive era forbearers in building in safeguards, codes, and ordinances that prevented creative shortcuts that might lead to loss of life and property must be honored. They erected a bureaucratic system for replicating the underlying networks that are the platform on which raw land is turned into cities.

That bureaucracy and its associated regulations must be reimagined as well. In fact, recent progress in places like New York City would suggest that we are being successful updating the building codes associated with vertical construction. We’ve made much less progress when it comes to the codes and ordinances associated with horizontal infrastructure. Both can be done however.

New Models as the Basis of Developing Future Infrastructure

Once we, in the realm of horizontal infrastructure, transition from independent, single-purpose centralized systems to a hybrid approach that relies on multi-purpose, smaller-scale distributed technologies sown into a green urban landscape — we open up the potential for more entrepreneurial solutions at the local level, more rapid and responsive deployment of services, and the ability to reduce risk incrementally at a faster pace, leaving populations in the developed and more importantly the developing world less vulnerable to the hazards of water borne disease, food shortages, and the predictable and unforeseen consequences of climate change and extreme events.

Integrated Water Resources Planning in Southern California

On April 11, I presented a lunchtime keynote at SAWPA’s annual Santa Ana River Watershed 2013 conference in Costa Mesa, CA. It reflected on Integrated Resources Planning in Southern California, my experiences, and where we may be headed.

From where I stand today, I look back on twenty years of integrated water resources management in Southern California; and I look forward towards a world that demands the systems thinkers we’ve produced over that time.

What started as an analytical tool, borrowed from the power industry to help us select among alternate investment portfolios, has evolved to become an essential framework for decision-making in this complex “system of systems” that is our world today. Looking to the future, it offers a pathway to “real-time” management of our increasingly interconnected networks and infrastructure – both gray and green.

Frankly, it has arrived just in time, as a model of effective collaboration and partnership.

The need is created by the success of our economy and society to improve our standard of living – and our willingness to take on the challenge of extending those gains to the vast majority of the world’s population waiting their turn for the same.

Our prosperity has come at a price of course. Largely due, perhaps, to our predecessors inability of to foresee just how successful they would be in exploiting the resources of the world around them.

I often quote the Royal Charter of the Institution of Civil Engineers, secured by its then president Thomas Telford in London in 1828, because it reflects the confidence, boarding on arrogance perhaps, which drove our nineteenth century industrial revolution. It defines “the profession of a Civil Engineer” as: “being the art of directing the Great Sources of Power in Nature for the use and convenience of man.” What a bold and sweeping claim that is.

It implies that natural resources and our planetary assets are all essentially limitless – or at least that they could be treated as limitless without impairing our long-term growth and prosperity.

On November 5, 1913 a crowd of over 40,000 gathered to see water arriving through the Los Angeles Aqueduct.

On November 5, 1913, a crowd of over 40,000 gathered to see water arriving through the Los Angeles Aqueduct.

It reflects a worldview that can be heard in William Mulholland’s closing words at the commissioning of the Los Angeles Aqueduct in 1913 as water began cascading into the San Fernando Valley to the cheers of over 40,000 onlookers, “There it is – Take it!”

And it underpins the bold promise made by the Metropolitan Water District of Southern California in the 1952 Laguna Declaration, unambiguously guaranteeing to “provide its service area with adequate supplies of water to meet expanding and increasing needs.” Effectively chartering Metropolitan to continue to reach outside of its services area and secure the water needed to close any gap between the region’s growing water needs and its local supplies.

In the intervening years, our worldview has changed – for many of us, radically changed. What once only astronauts and visionaries could see as the small blue spaceship in a universe of darkness is now viewed, as such, by almost anyone who downloads the news, or reads a blog, or gets their information the old-fashioned way from television anchors. It’s a story of exponential population growth, huge increases in energy and resource consumption, shifting patterns of urbanization, and sometimes-violent competition for fresh water and food.

We are in an era of human dominance over natural systems so successful that it appears to approach the carrying capacity of our planet to provide for the very humanity that shapes it. This picture can be viewed as really challenging at best – possibly hopeless at worst. And dystopian visions of broken civilization are visible in all forms of media . . . a dark view that I emphatically reject.

We have a track record of accomplishing bold, audacious goals. We have surpassed the ambitions of our nineteenth and early-twentieth century forbearers who fought in the industrial revolution. And we will achieve the bold new goals of the sustainability revolution we are currently embroiled in.

With fundamentally different goals come profoundly different outcomes. When we revisit our definition of “the problem” and reframe our mission and purpose, radically new solutions and outcomes reveal themselves. You could call it “low hanging fruit.”

We will be much more efficient in the use of the resources we employ and the ecosystems that supply them – now we are see our world differently. The OWOW vision of one water, one watershed, one world that is interdependent on every actor in it for its health and well being will produce different results.

When we see ourselves as part of interconnected systems, we are fundamentally breaking down the boundaries that were one of the secrets of nineteenth century success – the divide and conquer strategy. We are establishing an entirely new model for systems integration in the built and natural environments.

This meeting today is, in part, the result of our success in promoting the wide adoption of integrated planning and systems thinking in Southern California. I see that evolution having occurred in three phases as we evolved from narrowly focused “portfolio planning” in the 1990’s; to multi-stakeholder/multi-interest systems planning after the year 2000; to today’s broadly accepted systems thinking, further enhanced by the emerging technologies of pervasive sensors and monitoring, together with real-time big data analytics.

Single-Purpose to Portfolio Planning

But to start, let me take you back to the first time I understood the importance of an “integrated systems perspective.” It’s a story I’ve told many times. It was October 1992. I was meeting with Dick Balcerzak, who was then Assistant General Manager at Met. Dick was a very practical and experienced civil engineer – a tunneling expert. I was the consultant project manager for Met’s 1993 Strategic Plan, and we were meeting to discuss water supply objectives.

Dick told the story of why he thought Met needed such a plan. One of his division heads had approached him about a reclamation project which Met was about to support financially. When Dick asked why Met was paying for such an expensive project, he was told that it was essential to meet Met’s goal of developing 400,000 acre feet of reclaimed water. Dick was shocked. “Four hundred thousand acre-feet, whose goal is that?” He thought it was more reclaimed water and more money than Southern California needed or could afford.

Then, he challenged us to answer the question: “How much reclaimed water should be developed in Southern California?” And how much water from transfers, from conservation, from groundwater recovery, and from new storage? They were great questions and not easy to answer – then or now. They led to the preparation of the first Integrated Water Resources Plan for Southern California, completed about three years later in March 1996. As an aside, that 1996 report targeted a total of 450,000 acre feet of recycled water by 2020, with 220,000 coming from then existing projects and 230,000 from new projects.

But what did the story illustrate? For Dick, it was an example of the shortcomings of an organization structured around its own internal functional responsibilities, with little communication and coordination among functions. Everyone seemed to be setting their own goals and doing their own thing. For the division head, it must have felt like Dick didn’t get the important long-term role that recycling would play in the delivery of water to Southern Californians.

Dick’s definition of “expensive” was surely based on a short-term comparison to the cost of Met’s existing imported supplies, which at the time were looking a little less reliable than anyone expected. For the division head, the decision to support the project may have been based on criteria that Dick wasn’t even considering. Maybe it contributed to solving a wastewater effluent disposal problem. Maybe it provided some security against interruptions in supply due to earthquakes.

From my perspective, it convinced me of the need for a better process to address the frustrations that Dick experienced in reaching agreement on the problem, and better tools to help the division head justify his recommendations to management and policy makers.

MWD IRP Cover Scan Dec 17, 2012-page1Ultimately, the 1996 Met IRP was the analytical process that justified a redefinition of Met’s relationship with its member agencies.  As Jack Foley and Woody Wodraska stated in the forward to its executive summary: “ The IRP represents . . . the recognition that meeting Southern California’s future water needs is a shared responsibility among many water providers.” And it coincided with a flurry of integrated water resources plans that followed. The process forced a more holistic view of the urban water cycle and explicitly championed the partnerships that were needed to manage within it.

Multi-Stakeholder, Multi-Interest Planning Processes and Tools

After 1996, we all made tremendous progress in developing both the process and tools of integrated systems planning. And the scope of our efforts embraced wider and more diverse interests. Expectations regarding the benefits that could result from integrated planning increased; and the range of creative options for achieving new objectives increased as well. Through these many projects and partnerships, we evolved from enlightened portfolio managers to broad systems thinkers – an evolution in perspective that prepares us for addressing the complexity of sustainability issues and climate change in the years ahead

I went on to work as a consultant for the Los Angeles Department of Public Works Bureau of Sanitation on an effort that began as their Integrated Plan for the Wastewater Program; and ended, in 2006, as the City of Los Angeles Integrated Resources Plan – a joint effort of the Bureau of Sanitation and the Los Angeles Department of Water and Power. It integrated water supply, water conservation, water recycling, and stormwater management into what had previously been a wastewater facilities planning process.

Just as important, it also relied upon broad public input in the development of planning level policies. The process opened up a community dialogue and way of doing business that continues to this day. An while the analytical tools live on, the stakeholder process and community networks altered decision-making and governance in a lasting way in Los Angeles. It continues to strengthen a broad commitment to a “systems perspective” in dealing with new, difficult, and complex problems.

Integrated Operations, Management and Adaptation in “Real Time”

After 2006, I went on to spend time in Singapore developing better simulation tools for modeling infrastructure and environmental systems. Those tools are being used by the Singapore Housing Development Board in the planning and design of a new eco-township for a population of over 200,000.  And I continue to promote that research at the University of South Florida Patel College of Global Sustainability.  It’s a strong belief of mine that supporting integrated planning processes with better tools to simulate the actual performance of our institutional and investment decisions will only enhance the quality of the stakeholder dialogue, strengthen commitments to partnership, and improve outcomes.

So where is this all heading? It’s obvious to me that the emerging breakthroughs in big data collection, storage, and analytics offer ever more exciting possibilities for those of us who are committed to resilience, adaption and sustainable practices in the years ahead.

For those organizations and agencies that have incorporated integrated systems thinking into their governance and decision-making, the future could not be more promising.

The power of big data analytics to shed light on the unexpected behavior of our natural and built systems is only beginning to be appreciated. Realizing its full potential, however, relies on our ability to reach higher levels of cooperation and understanding than we have ever achieved. The incentive to do so couldn’t be greater, and the examples of what can be accomplished are immediately surrounding us.

As planners, designers, and engineers that combine small-scale distributed technologies, functional green landscape, high-performance building technology, and our backbone centralized utility grids we benefit immensely from the advanced analytics applied to urban and natural systems data. Through simulation and analysis like that going on in Singapore, we can provide insights into the performance and resilience of sustainable solutions during the development process – helping insure that the investments communities are making live up to the expectations they have established.

But that’s only addressing the planning and design phase of transforming our urban landscape. Big data analytics will drive more institutional integration in real-time operations than we have ever imagined – so-called smart cities and smart networks are developing worldwide. Just look at the intelligent operations center that Rio de Janeiro has implemented in collaboration with IBM for a real-life example.

We should be increasing the investment in sensors and monitoring; and integrating all of the data available in our urban watersheds including both the man-made and the natural systems that supports us. If we don’t do it for ourselves, no doubt new entrants like IBM, Cisco, Google, and others will integrate it on their own.

The technologies for radical improvement in sustainable performance and resilience are emerging rapidly. What will they be used for? Who will decide? For me, success depends on the commitment of communities and their leaders, businesses and their employees, interest groups and their members to develop and insist upon new goals. To utilize the processes and tools of integrated management for the accomplishment of new purposes, ambitious and aspirational goals that are respectful of the capacity of our natural environment and able to reach a growing global population. This is what makes you, attending this event, the real heroes of this story.

We have come a long way from the belief in a strategy that aspired to command and control the great forces of nature. We have taken the useful analytic framework of integrated resources planning and used it to uncover new relationships among the infrastructure and the institutions we manage and lead. The insights, once learned, are not easily forgotten. And the collaboration produces success that leads to further collaboration. No more divide and conquer. From this point on, let us integrate, adapt, and thrive as partners in a sustainable future.

Building a Sustainable Urban Future

Last December, the Singapore Economic Development Board partnered with The New Yorker magazine to publish another installment of its “Singapore Sessions” series. A PDF copy of the insert included in The New Yorker is available here. A complete transcript of the interview from which the published article was drawn follows:

Q: Do we accept that urbanisation is a necessary evil and all we can do is damage control?

I don’t accept the premise that urbanisation is an evil. I think it is absolutely necessary to economic development and improving the quality of life for growing populations. With respect to the urban infrastructure that we are involved with, we take a holistic view. We focus on water infrastructure, transportation, energy, waste management, building technologies, and urban ecology – all of the underlying structure and systems that are fundamental to a city’s health and prosperity. This underlying foundation of urban infrastructure is an essential contributor to a high quality of life and economic well being in a city.

The form of the city and the way in which we use land, water resources and energy has a great deal to do with the share of CO2 emissions attributable to cities. It is my belief that we can radically improve our performance with respect to all the infrastructure and do a great deal to reduce the green house gas emissions that come from urbanisation.

Long before we were aware of the impact of green house gas emissions and global warming, we struggled with issues of water and sanitation among rapidly urbanising populations. Frankly, if there’s one thing that can be done to improve the health and quality of life of a community it is to provide for sanitation and access to clean drinking water. That is the biggest leap forward a community can make.

We are dedicated to developing the tools and the understanding that will enable us to create significantly more efficient cities by approaching the planning of urban infrastructure in a different way. I am optimistic about our ability to come up with urban solutions that do a better job than we have done in the past.

We are developing new conceptual models of how we provide water, energy, and shelter more efficiently. There are many successful small-scale examples that show how we can radically improve the performance of the urban environment.

Q: What is green growth, and what is your vision of a future sustainable city?

When we use the term “green growth,” we are often talking about incorporating natural systems to do some of the work for us. Where in the past, we relied entirely on pipes or the electric grid, today we are also relying on vegetated swales to treat stormwater or wind turbines for energy. We are working on hybrid approaches to integrating landscape that performs valuable services. What serves as a park one day is designed to retain rainwater and treat it naturally during a storm event.

One of the other things that we are doing is “closing the loop” on the urban water cycle. What used to be separate systems designed to handle potable water, wastewater, and stormwater are now being viewed from an integrated perspective.

Since Roman times and before, cities have relied on rapid conveyance, piped systems to provide adequate water supply and convey urban drainage and waste products back to rivers and streams. These systems often put stress on the rural areas from which water is taken, as well as the receiving waters to which it is returned. So instead of taking this precious resource, using it once, and throwing it away, many cities are employing treatment technologies, at all scales, to recycle that water and use it again.

Singapore is a model for what can be done in this regard. Employing a combination of the latest technology integrated into natural “green” systems, a dense city like Singapore achieves water use efficiency that can handle increasing population, preserve public health, and create an environment that allows for economic development, education and a high quality of life. Singapore’s success convinces me that cities have the ability to meet the needs of growing populations if they put in place the physical infrastructure and governing institutions to build upon.

Q : What is the role of the Neysadurai Centre?

One of the challenges of having so many technology options, both green and traditional, is that they can be combined in so many different ways.

The traditional systems are well understood and accepted. But if we are going to combine the traditional approaches with some recycled water, or rainwater harvesting, or greywater systems the integration of these innovations can be difficult. Should we employ small-scale, large-scale, neighborhood-scale, building-scale solutions – or all of the above? We’ve got such a proliferation of new tools available to us, we need to be sure we a keeping up in our ability to efficiently integrate them into the built environment.

At the Neysadurai Centre, we are creating computer simulations of how various design alternatives are expected to perform. We take the plans of architects and engineers, translate them onto digital maps, incorporate different infrastructure solutions and technologies, and simulate how they will perform under expected conditions and use. These simulations keep track of hourly changes over periods on one year or more, comparing alternatives and searching for the most efficient solutions in a real world circumstances.

We want to develop the tools and the processes that will allow us to produce high-efficiency infrastructure solutions that save money, minimise green house gas emissions, and reduce waste – helping planners, architects and engineers design tomorrow’s cities.

Cities of the future will perform far more efficiently than they have in the past because we are integrating all this new technology, we are simulating how it performs, and we are finding approaches that will hopefully “leap frog” us forward in improving that the urban environment.

We see an interest in high-performing urban infrastructure almost everywhere, often driven by economics. There are developers who are excited about marketing products to both commercial and residential owners that have sustainability features built into them. There is a new ethic that is driving the migration of these approaches into cities all over the world. Many developers are really pushing the envelope and challenging themselves to see how small a “footprint” they can leave on the environment. We have the potential in dense urban environments like Singapore to house and provide for the health and well being of people with lower environmental consequences if we do it right. It’s not going to happen overnight because cities are organic. They are the result of a combination of economic forces, institutional forces, and everyday rules and regulations, like building codes, which shape their form and functions.

Q: How important is a public and private partnership?

The public sector and the private sector interact in cities all of the time. Ideally, public policies provide the incentives and the regulations to encourage the city to adapt to the future not simply replicate 19th century solutions. Almost everything seen in cities by way of infrastructure comes from 19th century models of how a city should work and what it should do.

Q: What are the differences between the urban environmental experience in Asia and that of the West? Would you agree that the sustainability issue was West-driven and now is Asia-driven? Why is this so?

Asia is where we’ve got to take on these challenges. Of course, 19th century paradigms were tremendously beneficial. The introduction of protected water supplies and water treatment in the 19th and early 20th centuries offered huge benefits to people who were dying of water-borne diseases like cholera. It is not that the systems we have don’t do great things for us, we should be as ambitious as our predecessors were in coming up with equally important, equally valuable breakthroughs that take advantage of new technologies and approaches.

One of the major differences between the West and Asia is the speed with which growth is occurring. The urgency is much greater and the scale of the infrastructure investment needed to keep up with it is also much greater. The scale and the pace of the growth in Asia is unprecedented.

Q: What advice would you give to planners of Asian cities?

I would encourage planners to have very high aspirations and challenge themselves to significantly improve the performance of the built environment in cities. There are always two paths. One is to do things the way they have always been done. In most cities, that’s the easiest way to go. Cities employ complex governance structures that have many responsible agencies providing needed approvals. If we take the conventional path, however, it likely will produce yesterday’s results.

The other path requires the courage to work with stakeholders on new design goals, taking advantage of the knowledge, the technologies, and the new approaches that are developing. Over time, if some communities have the courage to demonstrate real success with new solutions change will come. And I am not saying break the rules, instead develop new rules. And planners are one of the forces out there who can facilitate the process of creating tomorrow’s rules.

Q: Any other thoughts?

A city is a complex group of interests. When you get a group of people in a room from all different walks of life, all ages, backgrounds, occupations and incomes, of course it can be contentious. But I have generally found that when you ask people what they want from a city, what their goals are, they almost always share the same values. People want security, jobs, affordable housing, educational opportunities, mobility, safe water, open space, and a clean environment. What people expect of a livable city is generally quite similar. So what are people arguing about? They are typically arguing about how to do it. How do we accomplish it? Today we are more willing to accommodate the multiple interests of the citizens of the city, and we have more tools to accomplish that. I’ve been in a lot of contentious meetings as a planner of trying to reach consensus about what to do. They have usually ended peacefully because people’s goals are the same.

Finally, It is extremely important that planners have the benefit of overall good governance. The implementation of a plan, no matter how good it is, depends on good governance in the city where you work. And that’s been another aspect of Singapore that has made it a delightful place to work – not because people don’t have conflicts but because they are resolved in a transparent manner that is based on good public policy.

By definition, rapid urbanisation is always accompanied by significant investments. What we should think about is proving that there are better solutions for designing the built environment, while providing the institutional and economic incentives that steer cities towards those better outcomes.

Singapore Sessions is a trademark by Singapore Economic Development Board

 

Delta Resiliency: After an Event

VerdeXchange, which is held annually in Los Angeles, drew some impressive panels on many issues. I was asked to participate in a discussion of “Delta Resiliency: After the Event.” In this case, the event is referring to “the big one”  — an earthquake (or a flood for that matter) that results in catastrophic levee failures, the inundation of delta islands, and the radical conversion of the delta into a vast saltwater lake. Any discussion of resiliency requires a brief description of what it means. I found the definitions in Andrew Zolli’s recent book, Resilience: Why Things Bounce Back, particularly apropos:

In engineering resilience generally refers to the degree to which a structure like a bridge or a building can return to a baseline state after being disturbed. In emergency response it suggests the speed at which critical systems can be restored after an earthquake or a flood. In ecology is connotes an ecosystem’s ability to keep from being irrevocably degraded.

A System of Systems

Zolli’s comments reminded me that the Delta is a system of systems, each affecting the other in unpredictable ways. Focusing on one of them is generally what we do. But contemplating the outcomes of a seismic event that scientists say is “only a matter of time” demands the bigger picture.

The Ecosystem

First, there’s the ecosystem, the degradation of which has been the driving force behind our interest in the region for decades. It has proven to lack resilience in the face of alterations of its terrain and the extraction of water for agricultural, municipal, and industrial uses. One of the co-equal goals of the Bay Delta Conservation Plan (BDCP) is to recreate the Delta’s ecosystem, protect it against future degradation, and restore its ability to “bounce back” from unpredictable disturbances in the future.

The Physical Infrastructure

The second obvious system is the physical water diversion, storage, and transmission facilities that criss-cross the Central Valley and supply water for cities and agriculture as far south as San Diego. Those physical pipes and pumps are robust but not invincible (they have a useful life and need repairs and replacement). But frankly the engineered facilities can be designed to handle most earthquakes and floods. Their core purpose and real value, however, is entirely linked to the water they store and convey. Consequently, the ecosystem’s fragility has made the water storage and conveyance system increasingly vulnerable and surprisingly fragile itself.

The Emergency Responders

Seeing the connections between these two tangible systems so clearly is largely the result of  a highly complex system comprised of political, regulatory, governmental, utility, environmental, academic and other stakeholder interests throughout California and beyond. While it doesn’t typically characterize itself as such, this institutional system represents the Delta’s emergency responders. In fact, it has proven to be “antifragile” to use a term coined by Nassim Nicholas Taleb in his new book, Antifragile: Things That Gain From Disorder. Our institutional system seems to get stronger through struggle. Not necessarily more satisfying in producing specific outcomes to our liking — but stronger and more robust nonetheless. The people involved in attempting to address the vexing challenges of the Bay Delta have been working on this massively complex problem for decades — as was mentioned to me by a colleague in the midst of the fray.

After the Big One

Ironically, the more devastating the chaos, the better our emergency responders perform. After super-storm Sandy, and in the midst of a hotly-contested presidential election, Governor Christie ends up shaking President Obama’s hand and thanking him for his cooperation and support. So I’m pretty confident that after “the big one” we’ll see everyone come together and help one another address the catastrophic consequences of losing lives, land, property, and infrastructure affecting two-thirds of the population of California in one capacity or another. Not to mention the unpredictable impacts on the ecology.

What’s perhaps just as ironic is that the BDCP has been the result of one of the most globally ambitious, complex, and expensive collaborative efforts that I know of designed to restore systemic resilience — allowing for the bounce-back that resilience implies. It is an integrated plan that reduces risks, strives to repair and restore that ecology, and in so doing improve the reliability of the water system. After the big one, we’ll inevitably come together and reinvent the plan to restore a system of systems that will be more damaged than it needs to be — if we act now.

Champions of One System Only

Most of us are champions of one system only — not the hugely complex and amorphous system of systems. The BDCP, and CALFED before it, attempted to reach the higher altitude perspective that embraced it all — looking for a way to increase systemic resilience for all of our interests. Because we know what we will likely do following the event, and we know that the event will happen, why don’t we start now to improve our chances of success then?

Weakness of Statistical Intuition

Closing thought: our statistical intuition is not very good. We rarely opt for the ounce of prevention. It’s a primary theme of Thinking Fast and Slow by Daniel Kahneman.  The events we’re discussing will happen. Our sense of urgency is dampened by the our confidence that it won’t be happening today. One day, we will be horribly wrong and ingloriously flipped into another state of being. We should begin doing today what we will struggle to do then. It’s an investment that will serve us well.

 

 

 

Wellspring 2012 Tacoma

Last October, I was invited to address an enthusiastic group of stakeholders in the midst of launching Tacoma, Washington as a technology center for the water industry. While I have spent considerable time in Seattle over the years, this event was my first trip to Tacoma — a city whose history is as interesting as its aspirations. Located on the natural harbor of Commencement Bay, in the shelter of Puget Sound, Tacoma boomed in the late 19th century as the western terminus of the Northern Pacific Railroad, a decision that shocked the Seattle establishment in its day. Today, it is the largest port in Washington state and a major gateway to the Pacific.  And while the city’s fortunes have experienced both highs and lows over the last century and a half, the 1990 establishment of the University of Washington Tacoma campus, in the midst of the historic downtown area, has lifted the prospects for future successes and emboldened the community to redefine its mission. Naturally, water continues to be a central theme in that story.

The Wellspring 2012 Conference was organized by the Economic Development Board of Tacoma-Pierce County and hosted at the University of Washington Tacoma, with the stated purpose of “sharing ideas to build a water economy” in the region. In fact, Tacoma has learned a great deal about the complex water quality issues created by a booming industrial waterfront in the midst of a natural ecosystem of immeasurable beauty and value. It is successfully transitioning its waterfront assets to new uses and purposes, and sees its experience and talent as a worthy example for the broader water industry. In fact, its newly opened Center for Urban Waters, housed in an impressive LEED Platinum facility, is tangible evidence of the serious commitment to water industry leadership that the community of Tacoma represents. Take a look at the Wellspring 2012 website, where other videos from that October conference are offered. As a closing aside, I was told after my presentation that there would be no editing of the videotapes. So my off-the-cuff promotion of CH2M HILL near the end of my keynote remains intact. Let’s keep that among us . . .

Photo: Tacoma Museum of Glass on the Thea Foss Waterway by Canadian architect Arthur Erickson